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● Uses of em waves

Module 1

Introduction

Michael Faraday, from his experiments on electromagnetic Induction, found that a changing

magnetic field can produce an electric field. Is the converse also true? That is can a

changing electric field produce a magnetic field?

The answer was given by James Clark Maxwell, stating that the magnetic field is not only

produced by electric current through a conducting wire, but also by a time varying electric

field. Maxwell’s statement was based on the concept of “displacement current”, introduced

by him, to rectify the logical inconsistency of Ampere’s circuital law, applied to find the

intensity of magnetic field (B) at a point, using two circular loops which lie just outside and

just inside a capacitor, which is being charged by using a source of electricity.

Maxwell formulated a set of equations, which along with the Lorentz force formula explains,

mathematically, all the basic laws in electromagnetic wave theory.

In this unit, we shall study displacement current, characteristics and properties of

electromagnetic waves, including transverse nature.

Displacement Current

What is displacement current?Why do we need it?

In order to answer these and many other questions let us consider them in detail with a

bit of historical background.

Maxwell highlighted a logical inconsistency of Amperes circuital law using the following

illustration of charging of a capacitor.

Consider a parallel plate capacitor, with plates X and Y, connected to a battery B, as shown in

the figure 1 (a). On pressing the key K, conduction current (ic) starts flowing in the wires.

The plates of the capacitor start storing charge. (The strength of ic will exponentially

decrease with continuous charging of the capacitor). Figure1 (a) shows a circular loop (l1) of

Radius R, centered on the wire carrying ic, at any instant during the process of charging. P is

a point on this circular loop (l1).

To find the value of intensity of magnetic field (B) at P, Maxwell used Ampere’s Law,
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= (1)
𝑙
∮ 𝐵

→
. 𝑑𝑙

→
µ

0 
×  (𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑐𝑟𝑜𝑠𝑠𝑖𝑛𝑔 𝑡ℎ𝑒 𝑙𝑜𝑜𝑝)

(2)𝐿. 𝐻. 𝑆.   𝑜𝑓 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 1( ) = 𝐵 × 2π𝑅

(3)𝑅. 𝐻. 𝑆.   𝑜𝑓 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (1) = µ
0
 × 𝑖

𝐶

Putting equations (2) and (3) in equation (1) we get the magnitude of at P as:

(4)𝐵 =  
µ

0
 𝑖

𝐶

2 π 𝑅  

Now, consider a loop l2, which coincides with the open mouth of a pot-shaped surface as

shown in figure 1 (b) or a loop l3, coinciding with the open mouth of a tiffin-box shaped

surface as shown in figure 1 (c). You have to imagine that the plate X of the capacitor is

enclosed in the surface considered.

Figure 1 (b)                                                                                          Figure 1(c)

For both these surfaces,

L.H.S of eq. (1), (that is, Ampere’s circuital law), will still give the value B 2πR.×

But the R.H.S. will be μ0 0 = 0, as there is no conduction current (ic) passing through these×

surfaces.

B = 0, at the point P, if we find its value using the loops l2 and l3.

Therefore, it seems that, if we calculate the magnitude of B at P in one way, we get a

finite value and in another method, we get zero. This clearly shows that Ampere’s

circuital law is logically inconsistent.

Clearly, something or other is missing from this law.
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Maxwell thought that the missing part must have its origin in the electric field which is

passing through the surface S, during charging. Obviously, this field is varying with

time during the charging process.

Now, the magnitude of electric field, at any instant would be:

(5)𝐸 =  σ
ε

0
=  𝑄

𝐴ε
0

Hence, the electric flux passing through the surface S is:

(6)ϕ
𝐸

=  𝑄 𝐴
𝐴 ε

0
  =  𝑄

 ε
0
   

(7)∴ 
𝑑 ϕ

𝐸

𝑑𝑡 =  𝑑
𝑑𝑡

𝑄
ε

0
( ) =  1

ε
0

 𝑑𝑄
𝑑𝑡( ) =  𝑖

ε
0

or (8)𝑖 =  ε
0
 

𝑑 ϕ
𝐸

𝑑𝑡

But, as you know, there is no conduction current in between the plates of the capacitor.

So, in equation ( ), ‘i’ is not conduction current and this current is produced𝑖 =  ε
0
 

𝑑 ϕ
𝐸

𝑑𝑡

by the time varying electric field in the space between the plates.

Maxwell called this current, formed by the varying electric field, displacement current

(id):

Hence, (9)𝑖
𝑑

= ε
0
 

𝑑 ϕ
𝐸

𝑑𝑡

It is clear that ic and id are equal in magnitude, as

and𝑖
𝐶

=  𝑑𝑄
𝑑𝑡  𝑖

𝑑
=  ε

0
 

𝑑 ϕ
𝐸

𝑑𝑡 =   𝑑𝑄
𝑑𝑡  

Also, iC = 0 inside the capacitor and id = 0 in the connecting wires.

Hence, ic + id = ic or id (depending on the position of the loops or location of point P)

Using the concept of displacement current (id), Maxwell established continuity of total

current during charging, and modified Ampere’s circuital law as following:

=
𝑙
∮ 𝐵

→
. 𝑑𝑙

→
µ

0
 (𝑖

𝐶
+  𝑖

𝑑
)

or (10)
𝑙
∮ 𝐵

→
. 𝑑𝑙

→
=   µ

0
 (𝑖

𝐶
+  ε

0
 

𝑑 ϕ
𝐸

𝑑𝑡  )  

Equation (10) is called Ampere - Maxwell law. This law predicts that magnetic fields can

be produced by both the conduction current (ic) and the displacement current id.

The Above Can be in Steps
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i. Suppose the capacitor is an ideal capacitor, with a homogeneous electric field E

between the plates and no electric field outside the plates.

ii. At a certain time t the charge on the capacitor plates is Q. If the plates have a surface

area A then the electric field between the plates is equal to:

𝐸 =  𝑄
ε

0
𝐴

iii. The electric field outside the capacitor is equal to zero. The electric flux:

ϕ
𝐸

= 𝐸𝐴 = 𝑄
ε

0

iv. If a current I is flowing through the wire, then the charge on the capacitor plates will

be time dependent. The electric flux will therefore also be time dependent, and the

rate of change of electric flux is equal to:
𝑑ϕ

𝐸

𝑑𝑡 = 1
ε

0

𝑑𝑄
𝑑𝑡 = 𝐼

ε
0

v. The magnetic field around the wire can now be found by modifying Ampere's law:

∫ 𝐵
→

. 𝑑𝑙
→

= µ
0
ε

0

𝑑ϕ
𝐸

𝑑𝑡

vi. The effects of the varying electric flux and the electric current must be combined, and

Ampere's law becomes:

∫ 𝐵
→

. 𝑑𝑙
→

= µ
0
𝐼 + µ

0
ε

0

𝑑ϕ
𝐸

𝑑𝑡

vii. Equation is frequently written as:

∫ 𝐵
→

. 𝑑𝑙
→

= µ
0
(𝐼 +  𝐼

𝑑
)

where Id is called the displacement current and is defined as:

𝐼
𝑑

= ε
0

𝑑ϕ
𝐸

𝑑𝑡  

Think About These

● Will there be displacement current, once the capacitor is charged after

pressing key k?

● Will there be displacement current, once we remove the key k and allow the

capacitor to discharge?

● What if we make and break the circuit using the key, will there be

displacement current?
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● What will be the duration and direction of displacement current if we

connect an ac source instead of a dc battery?

● Would there be displacement current in an LC circuit at resonance?

Magnetic Field Produced by Displacement Current

Since conduction current flows through a thin wire (mostly), the formula can be𝐵 =
µ

0
 𝑖

𝐶

2 π 𝑅  

employed easily to find the value of B at any point near the wire.

Now, displacement current is produced by a varying electric field and the current flows

through a large cross-section (A) in the field region, where A is taken perpendicular to the

field direction. Hence, the value of B varies with distance r as illustrated in the figure 2 (a)

and (b).

Let the plates X and Y of the parallel plate capacitor are circular in shape with radius R.

Therefore, A = πR2 is the area of the plates. Since the electric field is crossing the entire𝐸
→

area A, displacement current (id) produced due to variation in will flow through an area A,𝐸
→

with a displacement current density of

…                                              (11)𝐽
𝑑
 =  

𝑖
𝑑

π 𝑅2        

Figure 2(a) Figure 2(b)

Let be a point in this field , at a distance of r from the centre, as shown in the figure. The𝑃'  𝐸
→

value of magnetic field intensity at will depend only on the displacement current flowing𝑃'

through an area . This current is: 𝐴' = π 𝑅2 𝑖
𝑑
'  

𝑖
𝑑
' = 𝐽

𝑑
× 𝑅2
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=  
𝑖

𝑑

π 𝑅2  ×  π 𝑟2

(12)= 𝑖
𝑑

×  𝑟2

𝑅2

Therefore,

𝐵
𝑃' 

=  
µ

0 
𝑖

𝑑
'

2 π 𝑟

or 𝐵
𝑃' 

=  
µ

0 

2 π 𝑟  × 𝑖
𝑑

×  𝑟2

𝑅2  

or ( ) (13)𝐵
𝑃' 

=  
µ

0 
𝑖

𝑑

2 π 𝑅  𝑟
𝑅

At r =R,

(14)𝐵 = 𝐵
𝑚𝑎𝑥

=  
µ

0 
𝑖

𝑑

2 π 𝑟

Therefore, eq. ( )] can be written as:[ 𝐵
𝑃' 

=  
µ

0 
𝑖

𝑑

2 π 𝑅  𝑟
𝑅

𝐵
𝑃' = 𝐵

𝑚𝑎𝑥
 ( 𝑟

𝑅 )

This shows that for . Now, for any point for which , the entire id will𝐵
𝑃' ∝ 𝑟 𝑟 ≤ 𝑅  𝑟 > 𝑅

produce magnetic field which is given as

, where . (15)𝐵 =  
µ

0
 𝑖

𝑑

2 π 𝑟   𝑟 > 𝑅

The variation of B with r in case of id can be represented as shown in the figure

Solving - Problems - Using Displacement Current

Solved Example

A parallel plate capacitor with circular plates of radius 1 m has a capacitance of 1 nF.

At t = 0, it is connected for charging in series with a resistor R =1 MΩ, across a 2 volt battery.
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Calculate the magnetic field at a point P, halfway between the centre and the periphery of the

plates, after t =10-3 s. Use the expression for charge q = CV (1 - e –t/τ), where the time

constant τ is equal to CR.

Solution

Given:

𝑅
𝑎
 =  1 𝑚

𝑂𝑃 =  𝑟 =  0. 5 𝑚

𝐶 =  1 𝑛𝐹 =  10−9 𝐹

𝑅𝑒𝑠𝑖𝑠𝑡𝑎𝑛𝑐𝑒,  𝑅 = 1 𝑀Ω =  106 Ω

𝑉 =  10 𝑣𝑜𝑙𝑡𝑠

τ =  𝐶𝑅 =  10−9 ×  106 =  10−3 𝑠

𝐶𝑉 =  10−9 ×  2 =  2 ×  10−9𝐶  

At time t, the charge (q) on the capacitor is:

𝑞 =  𝐶𝑉 (1 −  𝑒
( 𝑡

τ )
)

𝑞 =  2 ×  10−9(1 −  𝑒
(− 𝑡

τ )
)  𝐶

The electric field (E) between the plates is:

as  A = 1𝐸 =  σ
ϵ

0
 =  𝑞

𝐴 ϵ
0

 =   𝑞

π 𝑅
𝑎
2ϵ

0

  =  𝑞
π  ϵ

0
  

The electric flux through an area is:𝐴' =  π𝑟2

ϕ
𝐸

=  𝐸 × 𝐴' =  𝑞
π ϵ

0
  ×π𝑟2 =   𝑞

 ϵ
0

  × ( 1
2 )

2
 =  𝑞

4 ϵ
0

  

Now, the displacement current through is:𝐴'
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𝑖
𝑑
'  =  ϵ

0
 

𝑑ϕ
𝐸

𝑑𝑡  = ϵ
0 

𝑑
𝑑𝑡  𝑞

4ϵ
0
 ( )

=  1
4  𝑑

𝑑𝑡  𝑞( ) 

=  1
4  𝑑

𝑑𝑡  2 ×  10−9 1 −  𝑒
(− 𝑡

τ )( )( )
= 1

4 ×  2 ×  10−9 ×  𝑑
𝑑𝑡   −  𝑒

(− 𝑡
τ )( )

= 1
2 ×  10−9 × 1

τ  ×   −  𝑒
(− 𝑡

τ )( )
=  1

2 ×  10−9 × 1

10−3  ×  𝑒−1

=  1
2 ×  10−6 ×  1

2.72

=  0. 5 ×  0. 368 ×  10−6𝐴

Therefore, the magnetic field (B) at P ( m) is:𝑟 =  1
2

𝐵 =  
µ

0
 𝑖

𝑑
'

2 π𝑟  =  2× 10−7 
1
2( )  × 0. 5 × 0. 368 ×  10−6 𝑇 

=  0. 736 ×  10−13𝑇

Solved Example

A capacitor is made of circular plates, each of radius 12 cm, separated by 5.0 mm. This

capacitor is charged with a constant current of 0.15 A, using an external source.

(a) Calculate the rate of change of potential difference across the plates.

(b) Obtain the displacement current across the plates.

(c) Is Kirchhoff’s rule applicable at each plate of the capacitor?

Solution

Given: 𝑅 =  12 𝑐𝑚 =  0. 12 𝑚

𝑑 =  5. 0 𝑚𝑚 =  5 × 10−3 𝑚 

𝐼 =  0. 15 𝐴

ϵ
0
 =  8. 854 ×  10−12 𝐶2𝑁−1𝑚−2 

Area of the plates, 𝐴 = π 𝑅2 =  3. 14 ×  0. 12( ) 2 𝑚2

𝐶 =  
𝐴ϵ

0

𝑑  =  3.14 × 0.12( ) 2 × 8.854 × 10−12

5 × 10−3  

=  80. 1 ×  10−12𝐹
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a. and𝑄 =  𝐶𝑉 𝐼 =  𝑑𝑄
𝑑𝑡

𝑑𝑄
𝑑𝑡  =  𝐶 𝑑𝑉

𝑑𝑡

∴𝐼 =  𝐶 𝑑𝑉
𝑑𝑡

or 𝑑𝑉
𝑑𝑡  =  𝐼

𝐶  =  0.15

80.1 × 10−12  =  1. 87 ×109 𝑉𝑠−1

b. The displacement current (id) is equal to the conduction current in the charging circuit

(ic)

𝑖
𝑑
 =  𝑖

𝑐

=  0. 15 𝐴

c. We know that the current in the circuit is:

𝑖 = 𝑖
𝑐

+ 𝑖
𝑑
 =   𝑖

𝑐
=  𝑖

𝑑

as where there is , there is no and vice versa. Hence the ‘current’ remains the same in𝑖
𝑑

𝑖
𝑐

the charging circuit, including the space between the plates.

Hence, total current flowing into the plate is equal to the total current flowing out of the

plate, for both the plates.  Therefore, Kirchhoff’s law is true for the plates.

Solved Example

A parallel plate capacitor made of circular plates, each of radius 6.0 cm, has a capacitance of

C = 100 pF. This capacitor is connected to a 230 volt a.c. supply with an angular frequency

of =300 rad s-1.

(a) What is the rms value of the conduction current?

(b) Is the conduction current equal to the displacement current?

(c) What is the amplitude of B at a point 3.0 cm from the axis between the plates?

Solution: Given:

𝑅 =  6. 0 𝑐𝑚 =  6 × 10−2 𝑚
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𝐶 =  100 𝑝𝐹 =  100 × 10−12𝐹

ω =  300 𝑟𝑎𝑑 𝑠−1

𝑉 =  𝑉
𝑟𝑚𝑠

 =  230 𝑣𝑜𝑙𝑡𝑠

𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑖𝑣𝑒 𝑟𝑒𝑎𝑐𝑡𝑎𝑛𝑐𝑒 𝑋
𝑐
 =  1

ω𝐶  

a. rms value of conduction current is:

𝑖
𝐶( )

𝑟𝑚𝑠
 =  𝐼 =  

𝑉
𝑟𝑚𝑠

𝑋
𝑐

 =  𝑉
1

ω𝐶

= ω 𝐶𝑉

=  300 ×100 × 10−12 × 230

=  6. 9  × 10−6 𝐴

= 6. 9 µ𝐴

b. Yes, , even if the current is alternating or varying. 𝑖
𝑑
 =  𝑖

𝑐

c. At , the formula for magnetic field (B), is valid even for𝑟 = 𝑅
2 𝐵 =  

µ
0
 𝑖

𝑑

2 π𝑅  𝑟
𝑅( ) 

alternating .𝑖
𝑑

When this is maximum , the value of B also becomes maximum.𝑖
𝑑

2 𝑖
𝑑( )

𝑟𝑚𝑠( ) 

𝐵
𝑚𝑎𝑥

 =  𝐵
𝑝𝑒𝑎𝑘

=  
µ

0
 𝑖

𝑑( )
𝑚𝑎𝑥

2 π 𝑅
𝑟
𝑅( )

=  
2 × 10−7× 2 𝑖

𝑑( )
𝑟𝑚𝑠

6×10−2 

3× 10−2 

6× 10−2( )
=  2

6  ×10−5×6. 9×10−6

= 1. 63× 10−11 𝑡𝑒𝑠𝑙𝑎

Consequences of Displacement Current

The concept of displacement current introduced by Maxwell to generalize Ampere’s circuital

law is of great significance, as it has remarkably established the symmetry between the laws

of electricity and magnetism.

According to Faraday’s Law of electromagnetic induction, the emf induced in a coil is equal

to the rate of change of magnetic flux linked with the coil. But the existence of an emf

clearly shows the existence of an electric field. The emf developed in a circuit or in a closed

loop can be expressed in terms of work done per unit charge, mathematically as:
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ε =  ∮ 𝐸
→

. 𝑑𝑙
→

Where = induced emf and is the electric field.ε 𝐸
→

According to Faraday’s law of electromagnetic induction . =  −
𝑑ϕ

𝐵

𝑑𝑡

Therefore, (16)∮ 𝐸
→

. 𝑑𝑙
→

 =  −
𝑑ϕ

𝐵

𝑑𝑡

This is one of the important equations used by Maxwell to explain his theory of

electromagnetic waves. It may be noted here that: gives zero for static electric∮ 𝐸
→

. 𝑑𝑙
→

field, but it gives a finite non-zero value for time-varying electric field in space. The value of

obtained for any closed loop (imaginary) in a time varying electric field is taken as the∮ 𝐸
→

. 𝑑𝑙
→

emf developed in that closed loop, and this emf is represented in the L.H.S. of eq.

( ). Now, if we can have a time varying magnetic field produced in space,∮ 𝐸
→

. 𝑑𝑙
→

 =  −
𝑑ϕ

𝐵

𝑑𝑡

somehow, then the R.H.S. of eq. ( ) will give a non-zero finite value and∮ 𝐸
→

. 𝑑𝑙
→

 =−
𝑑ϕ

𝐵

𝑑𝑡

therefore the L.H.S. of this equation has to be finite and that means there will be a finite

electric field. In short, eq. ( ) predicts, according to Maxwell, that a∮ 𝐸
→

. 𝑑𝑙
→

 =  −
𝑑ϕ

𝐵

𝑑𝑡

time-varying magnetic field in space can produce an electric field in that space.

Now, the modified Ampere’s Law as given by eq. ( ) is:𝑖
𝑑

= ε
0
 

𝑑 ϕ
𝐸

𝑑𝑡

∮ 𝐵
→

. 𝑑𝑙
→

 =  µ
0
 𝑖

𝑐
 +  ϵ

0
 

𝑑ϕ
𝐸

𝑑𝑡( )
Here, if we imagine a closed loop in space, there cannot be any ic.

Therefore the above equation reduces to:

(17)∮ 𝐵
→

. 𝑑𝑙
→

 =  µ
0
  ϵ

0
 

𝑑ϕ
𝐸

𝑑𝑡( )
This is another important equation used by Maxwell to explain his electromagnetic

wave theory.
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Eq. ( ) predicts that if we produce a time varying electric field in∮ 𝐵
→

. 𝑑𝑙
→

 =  µ
0
  ϵ

0
 

𝑑ϕ
𝐸

𝑑𝑡( )
space, will have a finite value (and so will have a finite value and it will thus

𝑑ϕ
𝐸

𝑑𝑡 𝑖
𝑑

produce a magnetic field.

Now, the most fascinating aspect of Maxwell’s explanations is that, if the magnetic field (B)

produced by the time varying electric field (according to eq. ( ) is∮ 𝐵
→

. 𝑑𝑙
→

 =  µ
0
  ϵ

0
 

𝑑ϕ
𝐸

𝑑𝑡( )
also time varying, then and thus we can get the electric field (E) produced back,

𝑑ϕ
𝐵

𝑑𝑡  ≠0

according to equation ( ).∮ 𝐸
→

. 𝑑𝑙
→

 =  −
𝑑ϕ

𝐵

𝑑𝑡

Maxwell predicted, further, that if this cycle happens, it will continue to happen,

independently, by producing each other – that is the time varying electric field

producing a time-varying magnetic field and this magnetic field producing back the

electric.

These electric and magnetic fields, the variation in one producing the other, coupled

together and travelling with the speed of light is called the electromagnetic wave.

Maxwell’s Equations

To explain the production of electromagnetic wave,

Maxwell used eq.( ) and eq. ( ). But, to explain∮ 𝐸
→

. 𝑑𝑙
→

 =  −
𝑑ϕ

𝐵

𝑑𝑡 ∮ 𝐵
→

. 𝑑𝑙
→

 =  µ
0
  ϵ

0
 

𝑑ϕ
𝐸

𝑑𝑡( )
the various properties of these waves, Maxwell used two more fundamental equations from

electricity and magnetism, which are Gauss's laws in these fields. So, there are, in all, four

equations used to explain the electromagnetic wave theory. These are called Maxwell’s

equations.  They are:

1.
𝑆
∮ 𝐸

→
.  𝑑𝑆

→
 =  𝑐ℎ𝑎𝑟𝑔𝑒 𝑒𝑛𝑐𝑙𝑜𝑠𝑒𝑑 𝑏𝑦 𝑆 

ϵ
0

2. (no monopole exists in magnetism)
𝑆
∮ 𝐵

→
.  𝑑𝑆

→
 =  0

3.
𝑙
∮ 𝐸

→
.  𝑑𝑙

→
 =  −

𝑑ϕ
𝐵

𝑑𝑡
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4. (for space)
𝑙
∮ 𝐵

→
.  𝑑𝑙

→
 =  µ

0
ϵ

0

𝑑ϕ
𝐵

𝑑𝑡

Source of Electromagnetic Wave

Maxwell explained, theoretically, the production of EM waves with the help of eq. (

) and ( )∮ 𝐸
→

. 𝑑𝑙
→

 =  −
𝑑ϕ

𝐵

𝑑𝑡 ∮ 𝐵
→

. 𝑑𝑙
→

 =  µ
0
  ϵ

0
 

𝑑ϕ
𝐸

𝑑𝑡( )
The question arises that how do we produce the time varying electric field, in space, which

can produce a time-varying magnetic field, through which the electric field is produced back?

Stationary charges or charges moving uniformly cannot produce a time varying electric field.

Thus, we require an accelerating electric charge to produce a time varying electric field,

which can produce electromagnetic waves.

In practice, we basically use an oscillating electric charge (which is definitely accelerating) to

produce a continuous train of electromagnetic waves, which was first demonstrated by

Heinrich Rudolf Hertz in 1887. Thus, we understand that the source of EM waves is

accelerating/oscillating charge and that as long as the charges continue to do this,

electromagnetic waves are produced from those oscillations.

Summary

● We learnt that an electric current produces magnetic field and that two

current-carrying wires exert a magnetic force on each other, we have seen that a

magnetic field changing with time gives rise to an electric field

● James Clerk Maxwell (1831-1879), Electric field changing with time gives rise to a

magnetic field

● Maxwell noticed an inconsistency in the Ampere’s circuital law and suggested the

existence of an additional current, called displacement current, to remove this

inconsistency.

● Displacement current is due to time-varying electric field and is given by 𝑖
𝐶

=  𝑑𝑄
𝑑𝑡

and 𝑖
𝑑

=  ε
0
 

𝑑 ϕ
𝐸

𝑑𝑡 =   𝑑𝑄
𝑑𝑡  

● Source of magnetic field in exactly the same way as conduction current.
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